■協力:東京出版
http://www.tokyo-s.jp/
毎月1日・11日・21日に問題解答を更新
2月12日/ハイレベル問題
【解答・解説】
(1)
2つの「−」を書きこむ書きこみ方は、7つから2つを選ぶ選び方で、7×6÷2=21(通り)あります。
最初と最後に下に進むことはできないので、残り5つの空らんのうち「
」を書きこめるのは、両端以外の3つの空らんです。したがって、「
」の書きこみ方が3通りあります。
よって答えは、21×3=63(通り)。
(2)
左に向かう進み方をふくむときは、5つの「−」と「|」、「
」に分解できます。 (1)と同じように7つの空らんに、これらを書きこむ書きこみ方が何通りあるかを考えます。 「|」の書きこみ方が7通りあります。 最初と最後に左に進むことはできないので、残り6つの空らんのうち「
」を書きこめるのは、両端以外の4つの空らんです。したがって、「
」の書きこみ方が4通りあります。
よって、左に向かう進み方をふくむ経路は、7×4=28(通り)あります。
したがって答えは、63+28=91(通り)
解答・解説・ウィンドウを閉じる